Researchers find new drug target for mitochondrial dysfunction
Mitochondria, long known as "cellular power plants" for their generation of the key energy source adenosine triphosphate (ATP), are essential for proper cellular functions. Mitochondrial defects are often observed in a variety of diseases, including cancer, Alzheimer's disease, and Parkinson's disease, and are the hallmarks of a number of genetic mitochondrial disorders whose manifestations range from muscle weakness to organ failure. Despite a fairly strong understanding of the pathology of such genetic mitochondrial disorders, efforts to treat them have been largely ineffective.
But now, graduate student Walter Chen and postdoctoral researcher Kivanc Birsoy, both part of Whitehead Institute Member David Sabatini's lab, have unraveled how to rescue cells suffering from mitochondrial dysfunction, a finding that may lead to new therapies for this condition.
To find genetic mutations that would rescue the cells, Chen and Birsoy mimicked mitochondrial dysfunction in a haploid genetic system developed by former Whitehead Fellow Thijn Brummelkamp. After suppressing mitochondrial function using the drug antimycin, Chen and Birsoy saw that cells with mutations inactivating the gene ATPIF1 were protected against loss of mitochondrial function.
ATPIF1 is part of a backup system to save starving cells. When cells are deprived of oxygen and sugars, a mitochondrial complex that usually produces ATP, called ATP synthase, switches to consuming it, a state that can be harmful to an already starving cell. ATPIF1 interacts with ATP synthase to shut it down and prevent it from consuming the mitochondrion's dwindling ATP supply but, in the process, also worsens the mitochondrion's membrane potential
0 comments:
Post a Comment